LiveZilla Live Help
  • USA: +1 408 627 7616
  • UK: +44 208 123 3709
  • Australia: +61 2 9973 4499
  • NZ: 09 889 0094
design better faster funner ®
 

Frequently Asked Questions

and the answers you may be looking for

"I thought there was only one CAD program... now I find out there are dozens! I'm confused... Which one is right for me?"

There are many CAD programs and they are all different. Most are designed for a specific industry such as architecture or engineering or piping etc, and some are designed as general purpose all rounders.

Use this web site and our knowledge to help you choose wisely. Get the right advice to select the correct CAD software for your needs and budget. Don't just choose the only product you have ever heard of or the one your colleague uses, it may not be ideal for you. Ask the experts, and if we do not supply the product you need we can recommend where you will be able to get it.

Begin by matching the industry nearest to what you need from the 'Industries' menu above, then select from the products listed. If you are still unsure then contact us - describe your need and we will be delighted to assist you.

"I have never used CAD before, How easy is it to learn and use?"

This will depend greatly on three things: which product you choose, your attitude to learning new things and how much support you have available.

Some programs are much easier to learn and use than others, but all professional CAD programs require some time to become proficient. The key to success when learning is to relax. Treat the experience as a game and let go of the urgency and desperate need to be an expert overnight. Enjoy your CAD software and think of it as a tool to expand your creative mind or express your ideas. Be happy to make mistakes... there is always the 'undo' button.

If you are new to CAD software it will be wise to engage in one of the online training courses as they are inexpensive and informative. When you purchase your CAD software be sure to buy subscription support until you are 100% confident that you know all there is to know about the software and how to use it.

With advanced software like RealCAD, so long as you take the time to do the initial video or printed tutorials that come with the software, you'll be producing meaningful drawings within hours.

"I did a college course years ago and it nearly put me off CAD for life... has anything changed?"

Back then, most colleges and universities taught only AutoCAD, no matter in what design profession they were teaching. Even today misinformed institutions still teach software that is not always appropriate believing that all CAD is the same - It is not.

Clearly the needs of different professions is different and should be catered for by the different products. Do not enrol in a college course that advertises CAD training until you are sure they are teaching the right CAD software. Some CAD software will not require the same intensity of training as say AutoCAD requires whilst others will require more!

The good news is that many newer CAD offerings are much easier to learn and more intuitive to use. Some do not require formal training at all. In fact they are so easy to use that you will be drawing in 2D and modelling in 3D in minutes!

Most products are now supplied with training material on CD or DVD and CAD certificate training is now available online so you can complete it in your own time from the comfort of your own PC and return to it if you forget something.

"I am about to buy an Apple Mac computer... What CAD software should I get?"

Ultimately you should choose the software you need FIRST then select the best machine to run that software.

Mac machines are dominant in the pixel based graphics industry such as a desktop publishing, advertising and video production, whilst PC's are dominant in the vector based graphics environment that CAD traditionally belongs to.

Mac machines have captured the attention of graphic designers due to a previously superior performance with pixel manipulation and very appealing aesthetics whilst PC's were designed to perform better with the complex math required by CAD software especially in 3D.

Only a few modern CAD programs are designed specifically to run on Mac operating systems. More than 90% of CAD users are PC based, most of these using Microsoft Windows operating systems.

Newer Apple Mac machines with Intel based chipsets, are capable of running both Mac and Windows operating systems thus allowing the operation of many CAD software products. Programs supplied, but not developed by CAD International may not operate as well or work at all on these machines. However, you should check with us for compatibility before buying your hardware. Also it may be worth a look at this article.

CAD Internationals RealCAD range of software and software applications such as LANDWorksCAD will run perfectly on the Intel based iMacs running Windows XP, Vista or Windows 7.

Autodesk® have just released a Mac-specific version of AutoCAD (not AutoCAD LT). However this is not the same as regular AutoCAD on the PC and there are still few if any plug-in applications available so it is still only a basic CAD system on its own. For this and other reasons we would recommend visiting www.applecad.com for a list of available CAD software for the Mac or more readily select the Mac section of this web site for direct access to the latest and best CAD software for the Mac.

"I already have an Apple Mac machine....What CAD software should I get?"

Best response to this question is answered by an email we received from an existing user to our support department...

"Guys, I run RealCAD and LANDWorksCAD on my 24" iMac and the laptop. You can use an emulator program such as "parallels" that runs windows side by side ok, or you can boot up separately on "bootcamp" (included with Mac). It runs at full speed on "bootcamp" which is what I use and seems to work well. I have found it good to have two computers in one. No real compatibility problems working with Mac and PC in the same office" David Blake, Haylen Group, Melbourne, Australia.

"I am not sure if i need 2D or 3D software. Can you tell me what the difference is and whether it's worth the extra cost to have 3D?"

2D software lets you produce plans, elevations, details and sections in much the same way as drawing manually on a drawing board only faster, neater and more consistently. You are literally drawing on screen, line by line and like drawing manually, elevations and sections are not linked to the plan except in your own mind. Isometric and perspective drawing must be constructed, just like you would do on a drawing board.

If you only create simple diagrams, plan layouts, cutting patterns, shop details etc then 2D is all you'll need.

3D CAD lets you produce plans, elevations, sections, details, isometrics, axonometrics, parallel and perspective views, as well as renderings and even animations all from the one computer model. Changes made to the 3D model will typically update all the related 2D drawings automatically too. Volumes and materials can also be calculated directly from 3D models.

In most cases 3D is definitely worth the additional investment, not only because you will be able to do more, but because you will be able to better communicate your designs and ideas.

"I have heard there are several different 3D modelling systems. What are the differences?"

You are correct, there are several 3D modelling techniques deployed by various 3D modelling programs. Each has their advantages and disadvantages:

Wire-frame/Surface: This is the original and most common method of creating 3D models and allows for the most unrestricted designs. There are rarely any constraints applied to the model and the user has total control over all aspects of the modelling. The disadvantage is that modelling may be a little slower to produce and to make major modifications to. Surface modelling is often preferred when the shape of the designs are irregular or organic and require 'rubber-like' manipulation.

Boolean Solids: This method uses the concept of adding or subtracting 3D solid masses from or to each other to form new 3D object shapes. It is particularly good at performing tasks such as creating holes and protrusions or for massing exercises.

Parametric Feature Based Solids: This method is the most sophisticated and is ideal for mechanical applications where the design is quite structured and many parameters of the design may need to be constrained and later changed at various stages in the design process. Each part of the design such as a hole, protrusion or fillet is regarded as a discrete feature and this is linked to a set of parameters. By changing the parameter value the model is rebuilt from that stage in the models history and the feature is automatically modified. The disadvantage is that the user is required to be very aware of the order in which he or she builds the model features as incorrect ordering can lead to bizarre and difficult to predict results.

Hybrid: These modellers employ a combination of any or all of the above methods in a single program. This gives the ultimate flexibility and capability BUT can be unwieldy and difficult to master. These modellers are often used in the aerospace and transport design arenas as well as some product design and manufacturing fields.

Sketch: This is a sort of free form surface modelling in which the surfaces are merely a mesh of triangles, no matter what the shape of the object. This is good for the early stages of design where dimensional accuracy is less important than speed and visual appearance. 3D models produced in this environment are often exported or redrawn in a more accurate CAD modeller to produce highly accurate drawings for manufacturing processes.

"I need to be able to share my designs with others in my profession. What do I need to know?"

Unfortunately there is no 'industry standard' for sharing CAD files. When buying your software, look for a product that supports the formats used commonly in your particular industry. If you are unsure what is used in your industry, contact us as we can assist you.

.DXF (Drawing eXchange Format) is a common method of sharing 2D CAD drawing information from one program to another. Most professional level software supports this format. This is not a good format for sharing models containing complex 3D data. Survey data and point clouds are well supported using DXF however.

.DWG is a format used between AutoCAD programs and is also included as an option to import or export in many other programs. It can be problematic even from one version of AutoCAD to another and should be used with an understanding that it is not ideal nor is it the industry standard, albeit a very common format.

CAD International's latest range of software has adopted the .CAD format as its primary/native file format. These later products also exchange drawings via .DWG and .DXF as well as IGES, PLT and several others.

WMF (Windows Metafile)is the standard for copying drawings into Windows based programs such as Microsoft Word and Excel. Most professional level CAD software provides this option when Cutting and Pasting from the CAD program to Windows applications.

STEP, IGES, STL, Parasolid, etc are all sophisticated file formats for exchanging 3D data. Others also include VDA, SAT, X_T, SLC, GHS, MTS, 3DS, LWO, OBJ, VRML, RIB, POV, CAD, SKU, SKP and AI.

PDF is not a CAD file format for exchanging drawings but rather a format for being able to safely view and print drawings without being able to edit them. PDF is by far the most common way of sharing documents so they may be viewed and printed. Drawings saved as PDF files may be either Raster or Vector format. We have tools that will allow you to convert PDF files for use in your CAD software.

When exchanging drawings between different programs or between different versions of the same program, you can expect to find minor changes in elements such as font type, size and position, hatch patterns, colour schemes and sometimes line styles. In most cases, especially when working in 2D, these differences rare and are easily remedied.

"I am not sure what the difference is between Raster and Vector files....Why is CAD so different from from say Photoshop?"

Vector file formats are based on actual point locations in space that have clear definitions attached to those locations and definitions for the spaces between them. These definitions are translated to entities or objects we see on screen and are referred to as 'Vectors'.

Raster files are based on a collection of square or rectangular dots that are generally small enough and close enough together that the human eye can not perceive them as such. These dots may be blended or interpreted by the brain as 'lines' even though they are actually nothing more than a series of connected coloured dots. Typically a rectangular array of these dots forms a page or image. The images are known as Raster formats and are often generated by scanning pictures or paper drawings, digital photographs and by image manipulation software and basic 'drawing' programs.

Whilst Vector formats can be scaled and measured precisely, and can be manipulated on a line by line, entity by entity basis. Raster formats can only be edited by virtue of changing the dots that make up the picture or image.

"None of these questions and answers tell me what I want to know...what do I do now?"

Email one of our friendly expert staff members with your question as we are more than happy to help you.

 

Specials

  • CAD Support from $0.55 per day!
  • The Best CAD Online Training

Free Tools

CAD Club: Join us Free

Free Tips & Tricks,
Exclusive Offers and more...